Artikel Kajian Pendidikan Matematika Menurut Teori Filsafat (BAB II)


PEMBAHASAN

      A.    Definisi Filsafat
Secara etimologi, kata “filsafat/falsafah” merupakan kata serapan dari bahasa Yunani artinya philosophia. Dalam bahasa Yunani, kata philosphia merupakan kata majemuk dan berasal dari kata philia = persahabatan, cinta) dan Sophia = kebijaksanaan. Sehingga arti harafiahnya adalah seorang pecinta kebijaksanaan.
Dalam membangun tradisi filsafat, banyak orang mengajukan pertanyaan yang sama, menanggapi, dan meneruskan karya-karya pendahulunya sesuai dengan latar belakang budaya, bahasa, bahkan agama tempat tradisi filsafat itu dibangun.
Secara Terminologi, Filsafat mempunyai banyak sekali definisi tergantung dari siapa yang mendefinisikannya, bahkan setiap orang memiliki definisi tersendiri mengenai filsafat. Dalam hal ini, akan dijelaskan beberapa definisi dari beberapa ahli filsafat (filsuf), antara lain, sebagai berikut:
Para filsuf merumuskan pengertian filsafat sesuai dengan kecenderungan pemikiran kefilsafatan yang dimilikinya. Seorang Plato mengatakan bahwa : Filsafat adalah pengetahuan yang berminat mencapai pengetahuan kebenaran yang asli. Sedangkan muridnya Aristoteles berpendapat kalau filsafat adalah ilmu (pengetahuan) yang meliputi kebenaran yang terkandung didalamnya ilmu-ilmu metafisika, logika, retorika, etika, ekonomi, politik, dan estetika. Lain halnya dengan Al Farabi yang berpendapat bahwa filsafat adalah ilmu ( pengetahuan ) tentang alam maujud bagaimana hakikat yang sebenarnya. Berikut ini disajikan beberapa pengertian Filsafat menurut beberapa para ahli:
Plato (428-348 SM) : Filsafat tidak lain dari pengetahuan tentang segala yang ada. Aristoteles (384-322 SM) : Bahwa kewajiban filsafat adalah menyelidiki sebab dan asas segala benda. Dengan demikian filsafat bersifat ilmu umum sekali. Tugas penyelidikan tentang sebab telah dibagi sekarang oleh filsafat dengan ilmu.
Prof. Dr. H. Muhammad Arif Tiro, M.Pd., M.Sc., Ph.D, berasal dari bahasa Yunani kata filo dan sofis, filo artinya  cinta dalam arti yang seluas-luasnya yaitu ingin dan karena ingin tahu lalu berupaya mencapai yang diinginkan itu. Sofis artinya artinya kebijaksanaan, dari kata asing artinya pandai yaitu tahu dengan mendalam.
Dari berapa  pengertian filsafat secara terminologis di atas, dapat ditegaskan bahwa filsafat adalah ilmu pengetahuan yang menyelidiki dan memikirkan segala sesuatunya secara mendalam dan sungguh-sungguh, serta radikal sehingga mencapai hakikat segala situasi tersebut.

B.     Pendidikan
            1.      Defenisi Pendidikan
Secara universal, pendidikan dapat didefinisikan sebagai suatu cara untuk mengembangkan ketrampilan, kebiasaan dan sikap-sikap yang diharapkan dapat membuat seseorang menjadi warga negara yang baik, tujuannya untuk mengembangkan atau mengubah kognisi, afeksi dan konasi seseorang.
Menurut Kamus Besar Bahasa Indonesia, pendidikan adalah proses pengubahan sikap dan tata laku seseorang atau kelompok orang dalam usaha mendewasakan manusia melalui upaya pengajaran dan pelatihan, proses, cara, perbuatan mendidik.
Menurut UU Sisdiknas No. 2 tahun 1989: “Pendidikan adalah usaha sadar untuk menyiapkan peserta didik melalui kegiatan bimbingan, pengajaran, dan atau latihan bagi peranannya di masa yang akan datang.
Menurut UU Sisdiknas No. 20 tahun 2003: “Pendidikan adalah usaha sadar dan terencana untuk mewujudkan suasana belajar dan proses pembelajaran agar peserta didik secara aktif mengembangkan potensi dirinya untuk memiliki kekuatan spiritual keagamaan, pengendalian diri, kepribadian, kecerdasan, akhlak mulia, serta ketrampilan yang diperlukan dirinya dan masyarakat.
Menurut Ki Hajar Dewantara, Pendidikan adalah segala daya upaya untuk memajukan budi pekerti, pikiran serta jasmani anak, agar dapat memajukan kesempurnaan hidup yaitu hidup dan menghidupkan anak yang selaras dengan alam dan masyarakatnya.
Menurut Rosseau, Mendidik adalah memberikan pembekalan yang tidak ada pada masa anak-anak, tapi dibutuhkan pada masa dewasa.
Menurut John Dewey, pendidikan adalah suatu proses pembaharuan makna pengalaman, hal ini mungkin akan terjadi di dalam pergaulan biasa atau pergaulan orang dewasa dengan orang muda, mungkin pula terjadi secara sengaja dan dilembagakan untuk menghasilkan kesinambungan sosial. Proses ini melibatkan pengawasan dan perkembangan dari orang yang belum dewasa dan kelompok di mana dia hidup.
Dari beberapa pendapat mengenai pendidikan, maka dapat dirangkum definisi pendidikan sebagai berikut: pendidikan adalah proses memajukan budi pekerti yang terus menerus dengan cara memberikan pembekalan kepada seseorang agar bisa hidup dan menghidupkan anak yang selaras dengan masyarakatnya, sehingga terbentuk kepribadian yang utama, kebiasaan-kebiasaan, tingkah laku dan sifatnya yang permanen, untuk menghasilkan kesinambungan sosial.
           2.      Fungsi Pendidikan
Ada beberapa fungsi pendidikan menurut para pakar pendidikan, antara lain sebagai berikut:
Menurut Horton dan Hunt, lembaga pendidikan berkaitan dengan fungsi yang nyata (manifes) berikut:
a.       Mempersiapkan anggota masyarakat untuk mencari nafkah
b.  Mengembangkan bakat perseorangan demi kepuasan pribadi dan bagi kepentingan masyarakat.
c.      Melestarikan kebudayaan.
d.      Menanamkan keterampilan yang perlu bagi partisipasi dalam demokrasi.
Fungsi laten lembaga pendidikan adalah sebagai berikut.
a.    Mengurangi pengendalian orang tua. Melalui pendidikan, sekolah orang tua melimpahkan tugas dan wewenangnya dalam mendidik anak kepada sekolah.
b.    Menyediakan sarana untuk pembangkangan. Sekolah memiliki potensi untuk menanamkan nilai pembangkangan di masyarakat. Hal ini tercermin dengan adanya perbedaan pandangan antara sekolah dan masyarakat tentang sesuatu hal, misalnya pendidikan seks dan sikap terbuka.
c. Mempertahankan sistem kelas sosial. Pendidikan sekolah diharapkan dapat mensosialisasikan kepada para anak didiknya untuk menerima perbedaan prestise dan privilese, dan status yang ada dalam masyarakat. Sekolah juga diharapkan menjadi saluran mobilitas siswa ke status sosial yang lebih tinggi atau paling tidak sesuai dengan status orang tuanya.
d.     Memperpanjang masa remaja. Pendidikan sekolah dapat pula memperlambat masa dewasa seseorang karena siswa masih tergantung secara ekonomi pada orang tuanya.
Menurut David Popenoe, ada empat macam fungsi pendidikan yakni sebagai berikut:
a.      Transmisi (pemindahan) kebudayaan.
b.      Memilih dan mengajarkan peranan sosial.
c.      Menjamin integrasi sosial.
d.      Sekolah mengajarkan corak kepribadian.
e.      Sumber inovasi sosial.
C.    MATEMATIKA
            1.      Definisi Matematika
Matematika berasal dari bahasa Yunani Kuno (máthÄ“ma), yang berarti pengkajian, pembelajaran, ilmu yang ruang lingkupnya menyempit, dan arti teknisnya menjadi pengkajian matematik. Kata sifatnya adalah (mathÄ“matikós), berkaitan dengan pengkajian, atau tekun belajar, yang lebih jauhnya berarti matematis. Secara khusus, (mathÄ“matikḗ tékhnÄ“), di dalam bahasa Latin ars mathematica, berarti seni matematika.
Bentuk jamak sering dipakai di dalam bahasa Inggris seperti juga di dalam bahasa Perancis les mathématiques, merujuk pada bentuk jamak bahasa Latin yang cenderung netral mathematica (Cicero), berdasarkan bentuk jamak bahasa Yunani (ta mathÄ“matiká), yang dipakai Aristoteles, yang terjemahan kasarnya berarti “segala hal yang matematis”. Di dalam ragam percakapan, matematika kerap kali disingkat sebagai “math” di Amerika Utara dan “maths” di tempat lain.
            2.      Sejarah Matematika
Evolusi matematika dapat dipandang sebagai sederetan abstraksi yang selalu bertambah banyak, atau dengan kata lain perluasan pokok masalah. Abstraksi pada awalnya berlaku pada banyak binatang, tentang bilangan: pernyataan bahwa dua apel dan dua jeruk memiliki jumlah yang sama.
Selain mengetahui cara mencacah objek-objek fikika, manusia prasejarah juga mengenali cara mencacah besaran abstrak, seperti waktu-hari, musim, tahun. Aritmetika dasar (penjumlahan, pengurangan, perkalian, dan pembagian) mengikuti secara alami.
Langkah selanjutnya memerlukan penulisan atau sistem lain untuk mencatatkan bilangan, semisal tali atau dawai bersimpul yang disebut quipu dipakai oleh bangsa Inca untuk menyimpan data numerk. Sistem bilangan ada banyak dan bermacam-macam, bilangan tertulis yang pertama diketahui ada di dalam naskah warisan Mesir Kuno di Kerajaan Tengah Mesir, Lembaran Matematika Rhind.
Penggunaan terkuno matematika adalah dalam perdagangan, pengukuran tanah, pelukisan, dan pola-pola penenunan dan pencatatan waktu dan tidak pernah berkembang luas hingga tahun 3000 SM, ketika orang Babilonia dan Mesir Kuno mulai menggunakan aritmetika, aljabar, dan geometri untuk penghitungan pajak dan urusan keuangan lainnya, bangunan dan konstruksi dan astronomi. Pengkajian matematika yang sistematis di dalam kebenarannya sendiri dimulai pada zaman Yunani Kuno antara tahun 600 – 300 SM.
Matematika sejak saat itu segera berkembang luas, dan terdapat interaksi bermanfaat antara matematika dan sains, menguntungkan kedua belah pihak. Penemuan-penemuan matematika dibuat sepanjang sejarah dan berlanjut hingga kini.
            3.      Keindahan Matematika
Matematika muncul pada saat dihadapinya masalah-masalah yang rumit yang melibatkan kuantitas, struktur, ruang, atau perubahan. Mulanya masalah-masalah itu dijumpai di dalam perdaganganpengukuran tanah, dan kemudian astronomi; kini, semua ilmu pengetahuan menganjurkan masalah-masalah yang dikaji oleh para matematikawan, dan banyak masalah yang muncul di dalam matematika itu sendiri. Misalnya, seorang fisikawan Richard Feynman menemukan rumus integral lintasan mekanika kuantum menggunakan paduan nalar matematika dan wawasan fisika, dan teori dawai masa kini, teori ilmiah yang masih berkembang yang berupaya membersatukan empat gaya dasar alami, terus saja mengilhami matematika baru.
Beberapa matematika hanya bersesuaian di dalam wilayah yang mengilhaminya, dan diterapkan untuk memecahkan masalah lanjutan di wilayah itu. Tetapi seringkali matematika diilhami oleh bukti-bukti di satu wilayah ternyata bermanfaat juga di banyak wilayah lainnya, dan menggabungkan persediaan umum konsep-konsep matematika. Fakta yang menakjubkan bahwa matematika "paling murni" sering beralih menjadi memiliki terapan praktis adalah apa yang Eugene Wigner memanggilnya sebagai "Ketidakefektifan Matematika tak ternalar di dalam Ilmu Pengetahuan Alam".
Mereka yang berminat kepada matematika seringkali menjumpai suatu aspek estetika tertentu di banyak matematika. Banyak matematikawan berbicara tentang keanggunan matematika, estetika yang tersirat, dan keindahan dari dalamnya. Kesederhanaan dan keumumannya diharga.
            4.      Notasi Matematika
Sebagian besar notasi matematika yang digunakan saat ini tidaklah ditemukan hingga abad ke-16. Pada abad ke-18, Euler bertanggung jawab atas banyak notasi yang digunakan saat ini. Notasi modern membuat matematika lebih mudah bagi para profesional, tetapi para pemula sering menemukannya sebagai sesuatu yang mengerikan. Terjadi pemadatan yang amat sangat: sedikit lambang berisi informasi yang kaya. Seperti notasi musik, notasi matematika modern memiliki tata kalimat yang kaku dan menyandikan informasi yang barangkali sukar bila dituliskan menurut cara lain.
Bahasa matematika dapat juga terkesan sukar bagi para pemula. Kata-kata seperti atau dan hanya memiliki arti yang lebih presisi daripada di dalam Percakapan sehari-hari. Selain itu, kata-kata semisal terbuka dan lapangan memberikan arti khusus matematika. Jargon matematika termasuk istilah-istilah teknis semisal homomorfisme dan terintegralkan. Tetapi ada alasan untuk notasi khusus dan jargon teknis ini: matematika memerlukan presisi yang lebih dari sekadar percakapan sehari-hari. Para matematikawan menyebut presisi bahasa dan logika ini sebagai "kaku" (rigor).
Kaku secara mendasar adalah tentang bukti matematika. Para matematikawan ingin teorema mereka mengikuti aksioma-aksioma dengan maksud penalaran yang sistematik. Ini untuk mencegah "teorema" yang salah ambil, didasarkan pada praduga kegagalan, di mana banyak contoh pernah muncul di dalam sejarah subjek ini. Tingkat kekakuan diharapkan di dalam matematika selalu berubah-ubah sepanjang waktu: bangsa Yunani menginginkan dalil yang terperinci, namun pada saat itu metode yang digunakan Isaac Newton kuranglah kaku. Masalah yang melekat pada definisi-definisi yang digunakan Newton akan mengarah kepada munculnya analisis saksama dan bukti formal pada abad ke-19. Kini, para matematikawan masih terus beradu argumentasi tentang bukti berbantuan-komputer. Karena perhitungan besar sangatlah sukar diperiksa, bukti-bukti itu mungkin saja tidak cukup kaku.
Aksioma menurut pemikiran tradisional adalah "kebenaran yang menjadi bukti dengan sendirinya", tetapi konsep ini memicu persoalan. Pada tingkatan formal, sebuah aksioma hanyalah seutas dawai lambang, yang hanya memiliki makna tersirat di dalam konteks semua rumus yang terturunkan dari suatu sistem aksioma. Inilah tujuan program Hilbert untuk meletakkan semua matematika pada sebuah basis aksioma yang kokoh, tetapi menurut Teorema ketaklengkapan Gödel tiap-tiap sistem aksioma (yang cukup kuat) memiliki rumus-rumus yang tidak dapat ditentukan; dan oleh karena itulah suatuaksiomatisasi terakhir di dalam matematika adalah mustahil. Meski demikian, matematika sering dibayangkan (di dalam konteks formal) tidak lain kecuali teori himpunan di beberapa aksiomatisasi, dengan pengertian bahwa tiap-tiap pernyataan atau bukti matematika dapat dikemas ke dalam rumus-rumus teori himpunan.
            5.      Matematika sebagai Ratu Ilmu
Carl Friedrich Gauss mengatakan matematika sebagai "Ratunya Ilmu Pengetahuan". Di dalam bahasa aslinya, Latin Regina Scientiarum, juga di dalam bahasa Jerman Königin der Wissenschaften, kata yang bersesuaian dengan ilmu pengetahuan berarti (lapangan) pengetahuan. Jelas, inipun arti asli di dalam bahasa Inggris, dan tiada keraguan bahwa matematika di dalam konteks ini adalah sebuah ilmu pengetahuan. Pengkhususan yang mempersempit makna menjadi ilmu pengetahuan alam adalah di masa terkemudian. Bila seseorang memandang ilmu pengetahuan hanya terbatas pada dunia fisika, maka matematika, atau sekurang-kurangnya matematika murni, bukanlah ilmu pengetahuan.
Albert Einstein menyatakan bahwa "sejauh hukum-hukum matematika merujuk kepada kenyataan, maka mereka tidaklah pasti; dan sejauh mereka pasti, mereka tidak merujuk kepada kenyataan."
Banyak filsuf yakin bahwa matematika tidaklah terpalsukan berdasarkan percobaan, dan dengan demikian bukanlah ilmu pengetahuan per definisi Karl Popper. Tetapi, di dalam karya penting tahun 1930-an tentang logika matematika menunjukkan bahwa matematika tidak bisa direduksi menjadi logika, dan Karl Popper menyimpulkan bahwa "sebagian besar teori matematika, seperti halnya fisika dan biologi, adalah hipotetis-deduktif: oleh karena itu matematika menjadi lebih dekat ke ilmu pengetahuan alam yang hipotesis-hipotesisnya adalah konjektur (dugaan), lebih daripada sebagai hal yang baru. Para bijak bestari lainnya, sebut saja Imre Lakatos, telah menerapkan satu versipemalsuan kepada matematika itu sendiri.
Matematika percobaan terus bertumbuh kembang, mengingat kepentingannya di dalam matematika, kemudian komputasi dan simulasi memainkan peran yang semakin menguat, baik itu di ilmu pengetahuan, maupun di matematika, melemahkan objeksi yang mana matematika tidak menggunakan metode ilmiah. Di dalam bukunya yang diterbitkan pada 2002 A New Kind of ScienceStephen Wolfram berdalil bahwa matematika komputasi pantas untuk digali secara empirik sebagai lapangan ilmiah di dalam haknya/kebenarannya sendiri.
Pendapat-pendapat para matematikawan terhadap hal ini adalah beraneka macam. Banyak matematikawan merasa bahwa untuk menyebut wilayah mereka sebagai ilmu pengetahuan sama saja dengan menurunkan kadar kepentingan sisi estetikanya, dan sejarahnya di dalam tujuh seni liberal tradisional; yang lainnya merasa bahwa pengabaian pranala ini terhadap ilmu pengetahuan sama saja dengan memutar-mutar mata yang buta terhadap fakta bahwa antarmuka antara matematika dan penerapannya di dalam ilmu pengetahuan dan rekayasa telah mengemudikan banyak pengembangan di dalam matematika.
Satu jalan yang dimainkan oleh perbedaan sudut pandang ini adalah di dalam perbincangan filsafat apakah matematika diciptakan (seperti di dalam seni) atau ditemukan (seperti di dalam ilmu pengetahuan). Adalah wajar bagi universitas bila dibagi ke dalam bagian-bagian yang menyertakan departemen Ilmu Pengetahuan dan Matematika, ini menunjukkan bahwa lapangan-lapangan itu dipandang bersekutu tetapi mereka tidak seperti dua sisi keping uang logam. Pada tataran praktisnya, para matematikawan biasanya dikelompokkan bersama-sama para ilmuwan pada tingkatan kasar, tetapi dipisahkan pada tingkatan akhir. Ini adalah salah satu dari banyak perkara yang diperhatikan di dalam filsafat matematika.
Penghargaan matematika umumnya dipelihara supaya tetap terpisah dari kesetaraannya dengan ilmu pengetahuan. Penghargaan yang adiluhung di dalam matematika adalah Fields Medal (medali lapangan), dimulakan pada 1936 dan kini diselenggarakan tiap empat tahunan. Penghargaan ini sering dianggap setara dengan Hadiah Nobel ilmu pengetahuan.
Wolf Prize in Mathematics, dilembagakan pada 1978, mengakui masa prestasi, dan penghargaan internasional utama lainnya, Hadiah Abel, diperkenalkan pada 2003. Ini dianugerahkan bagi ruas khusus karya, dapat berupa pembaharuan, atau penyelesaian masalah yang terkemuka di dalam lapangan yang mapan.
            6.      Bidang-Bidang Matematika
Disiplin-disiplin utama di dalam matematika pertama muncul karena kebutuhan akan perhitungan di dalam perdagangan, untuk memahami hubungan antarbilangan, untuk mengukur tanah, dan untuk meramal peristiwa astronomi. Empat kebutuhan ini secara kasar dapat dikaitkan dengan pembagian-pembagian kasar matematika ke dalam pengkajian besaran, struktur, ruang, dan perubahan (yakni aritmetikaaljabargeometri, dan analisis). Selain pokok bahasan itu, juga terdapat pembagian-pembagian yang dipersembahkan untuk pranala-pranala penggalian dari jantung matematika ke lapangan-lapangan lain: ke logika, ke teori himpunan (dasar), ke matematika empirik dari aneka macam ilmu pengetahuan (matematika terapan), dan yang lebih baru adalah ke pengkajian kaku akan ketakpastian.
           7.      Besaran
Pengkajian besaran dimulakan dengan bilangan, pertama bilangan asli dan bilangan bulat ("semua bilangan") dan operasi aritmetika di ruang bilangan itu, yang dipersifatkan di dalam aritmetika. Sifat-sifat yang lebih dalam dari bilangan bulat dikaji di dalam teori bilangan, dari mana datangnya hasil-hasil popular seperti Teorema Terakhir Fermat. Teori bilangan juga memegang dua masalah tak terpecahkan: konjektur prima kembar dan konjektur Goldbach.
Karena sistem bilangan dikembangkan lebih jauh, bilangan bulat diakui sebagai himpunan bagian dari bilangan rasional ("pecahan"). Sementara bilangan pecahan berada di dalam bilangan real, yang dipakai untuk menyajikan besaran-besaran kontinu. Bilangan real diperumum menjadi bilangan kompleks. Inilah langkap pertama dari jenjang bilangan yang beranjak menyertakan kuarternion dan oktonion. Perhatian terhadap bilangan asli juga mengarah pada bilangan transfinit, yang memformalkan konsep pencacahan ketakhinggaan.
           8.      Ruang
Pengkajian ruang bermula dengan geometri khususnya, geometri euclid. Trigonometri memadukan ruang dan bilangan, dan mencakupi Teorema pitagoras yang terkenal. Pengkajian modern tentang ruang memperumum gagasan-gagasan iniu untuk menyertakan geometri berdimensi lebih tinggi, geometri tak-euclid (yang berperan penting di dalam relativitas umum) dan topologi. Besaran dan ruang berperan penting di dalam geometri analitik, geometri diferensial, dan geometri aljabar. Di dalam geometri diferensial terdapat konsep-konsep buntelan serat dan kalkulus lipatan.
Di dalam geometri aljabar terdapat penjelasan objek-objek geometri sebagai himpunan penyelesaian persamaan polinom, memadukan konsep-konsep besaran dan ruang, dan juga pengkajian grup topologi, yang memadukan struktur dan ruang. Grup lie biasa dipakai untuk mengkaji ruang, struktur, dan perubahan. Topologi di dalam banyak percabangannya mungkin menjadi wilayah pertumbuhan terbesar di dalam matematika abad ke-20, dan menyertakan konjektur poincaré yang telah lama ada dan teorema empat warna, yang hanya "berhasil" dibuktikan dengan komputer, dan belum pernah dibuktikan oleh manusia secara manual.
            9.      Perubahan
Memahami dan menjelaskan perubahan adalah tema biasa di dalam ilmu pengetahuan alam, dan kalkulus telah berkembang sebagai alat yang penuh-daya untuk menyeledikinya. Fungsi-fungsi muncul di sini, sebagai konsep penting untuk menjelaskan besaran yang berubah. Pengkajian kaku tentang bilangan real dan fungsi-fungsi berpeubah real dikenal sebagai analisis real, dengan analisis kompleks lapangan yang setara untuk bilangan kompleks.
Hipotesis Riemann, salah satu masalah terbuka yang paling mendasar di  dalam matematika, dilukiskan dari analisis kompleks. Analisis fungsional memusatkan perhatian pada ruang fungsi (biasanya berdimensi tak-hingga). Satu dari banyak terapan analisis fungsional adalah mekanika kuantum.
            10.  Struktur
Banyak objek matematika, semisal himpunan bilangan dan fungsi, memamerkan struktur bagian dalam. Sifat-sifat structural objek-objek ini diselidiki di dalam pengkajian grupgelangganglapangan dan sistem abstrak lainnya, yang mereka sendiri adalah objek juga. Ini adalah lapangan aljabar abstrak. Sebuah konsep penting di sini yakni vektor, diperumum menjadi ruang vektor, dan dikaji di dalam aljabar linear. Pengkajian vektor memadukan tiga wilayah dasar matematika: besaran, struktur, dan ruang. Kalkulus vektor memperluas lapangan itu ke dalam wilayah dasar keempat, yakni perubahan. Kalkulus tensor mengkaji kesetangkupan dan perilaku vektor yang dirotasi. Sejumlah masalah kuno tentang Kompas dan konstruksi garis lurus akhirnya terpecahkan oleh Teori galois.
            11.  Dasar dan Filsafat
Untuk memeriksa dasar-dasar matematika, lapangan logika matematika dan teori himpunan dikembangkan, juga teori kategori yang masih dikembangkan. Kata majemuk "krisis dasar" mejelaskan pencarian dasar kaku untuk matematika yang mengambil tempat pada dasawarsa 1900-an sampai 1930-an. Beberapa ketaksetujuan tentang dasar-dasar matematika berlanjut hingga kini. Krisis dasar dipicu oleh sejumlah silang sengketa pada masa itu, termasuk kontroversi teori himpunan Cantor dan kontroversi Brouwer-Hilbert.
Logika matematika diperhatikan dengan meletakkan matematika pada sebuah kerangka kerja aksiomatis yang kaku, dan mengkaji hasil-hasil kerangka kerja itu. Logika matematika adalah rumah bagi Teori ketaklengkapan kedua Gödel, mungkin hasil yang paling dirayakan di dunia logika, yang (secara informal) berakibat bahwa suatu sistem formal yang berisi aritmetika dasar, jika suara (maksudnya semua teorema yang dapat dibuktikan adalah benar), maka tak-lengkap (maksudnya terdapat teorema sejati yang tidak dapat dibuktikan di dalam sistem itu).
            12.  Matematika Diskret
Matematika diskret adalah nama lazim untuk lapangan matematika yang paling berguna di dalam ilmu komputer teoretis. Ini menyertakan teori komputabilitas, teori kompleksitas komputasional, dan teori informasi. Teori komputabilitas memeriksa batasan-batasan berbagai model teoretis komputer, termasuk model yang dikenal paling berdaya Mesin turing.
Teori kompleksitas adalah pengkajian traktabilitas oleh komputer; beberapa masalah, meski secara teoretis terselesaikan oleh komputer, tetapi cukup mahal menurut konteks waktu dan ruang, tidak dapat dikerjakan secara praktis, bahkan dengan cepatnya kemajuan perangkat keras komputer. Pamungkas, teori informasi memusatkan perhatian pada banyaknya data yang dapat disimpan pada media yang diberikan, dan oleh karenanya berkenaan dengan konsep-konsep semisal pemadatan dan entropi.
Sebagai lapangan yang relatif baru, matematika diskret memiliki sejumlah masalah terbuka yang mendasar. Yang paling terkenal adalah masalah "P=NP?", salah satu Masalah Hadiah Milenium.
            13.  Matematika Terapan
Matematika terapan berkenaan dengan penggunaan alat matematika abstrak guna memecahkan masalah-masalah konkret di dalam ilmu pengetahuanbisnis, dan wilayah lainnya. Sebuah lapangan penting di dalam matematika terapan adalah statistika, yang menggunakan teori peluang sebagai alat dan membolehkan penjelasan, analisis, dan peramalan gejala di mana peluang berperan penting. Sebagian besar percobaan, survey, dan pengkajian pengamatan memerlukan statistika. (Tetapi banyak statistikawan, tidak menganggap mereka sendiri sebagai matematikawan, melainkan sebagai kelompok sekutu.)
D.    FILSAFAT MATEMATIKA
            1.      Definisi Filsafat Matematika
Filsafat matematika adalah cabang dari filsafat yang mengkaji anggapan-anggapan filsafat, dasar-dasar, dan dampak-dampak matematika. Tujuan dari filsafat matematika adalah untuk memberikan rekaman sifat dan metodologi matematika dan untuk memahami kedudukan matematika di dalam kehidupan manusia. Sifat logis dan terstruktur dari matematika itu sendiri membuat pengkajian ini meluas dan unik di antara mitra-mitra bahasan filsafat lainnya.
            2.      Hubungan Filsafat dengan Matematika
Matematika dan filsafat mempunyai sejarah keterikatan satu dengan yang lain sejak jaman Yunani Kuno. Matematika di samping merupakan sumber dan inspirasi bagi para filsuf, metodenya juga banyak diadopsi untuk mendeskripsikan pemikiran filsafat. Kita bahkan mengenal beberapa matematikawan yang sekaligus sebagai sorang filsuf, misalnya Descartes, Leibniz, Bolzano, Dedekind, Frege, Brouwer, Hilbert, G¨odel, and Weyl. Pada abad terakhir di mana logika yang merupakan kajian sekaligus pondasi matematika menjadi bahan kajian penting baik oleh para matematikawan maupun oleh para filsuf. Logika matematika mempunyai peranan hingga sampai era filsafat kontemporer di mana banyak para filsuf kemudian mempelajari logika.
Logika matematika telah memberi inspirasi kepada pemikiran filsuf, kemudian para filsuf juga berusaha mengembangkan pemikiran logika misalnya “logika modal”, yang kemudian dikembangkan lagi oleh para matematikawan dan bermanfaat bagi pengembangan program komputer dan analisis bahasa. Salah satu titik krusial yang menjadi masalah bersama oleh matematika maupun filsafat misalnya persoalan pondasi matematika. Baik matematikawan maupun para filsuf bersama-sama berkepentingan untuk menelaah apakah ada pondasi matematika? Jika ada apakah pondasi itu bersifat tunggal atau jamak? Jika bersifat tunggal maka apakah pondasi itu? Jika bersifat jamak maka bagaimana kita tahu bahwa satu atau beberapa diantaranya lebih utama atau tidak lebih utama sebagai pondasi?
Para matematikawan dan para filsuf secara bersama-sama masih terlibat di dalam perdebatan mengenai peran intuisi di dalam pemahaman matematika dan pemahaman ilmu pada umumnya. Terdapat langkah-langkah di dalam metode matematika yang tidak dapat diterima oleh seorang intuisionis. Seorang intuisionis tidak dapat menerima aturan logika bahwa kalimat “a atau b” bernilai benar untuk a bernilai benar dan b bernilai benar. Seorang intuisionis juga tidak bisa menerima pembuktian dengan metode membuktikan ketidakbenaran dari ingkarannya.
Apakah bilangan atau obyek matematika memang betul-betul ada? Jika mereka ada apakah di dalam atau di luar pikiran kita? Jika mereka ada di luar pikiran kita bagaimana kita bisa memahaminya? Jika mereka ada di dalam pikiran kita bagaimana kita bisa membedakan mereka dengan konsep-konsep kita yang lainnya? Bagaimana hubungan antara obyek matematika dengan logika? Pertanyaan tentang “ada” nya obyek matematika merupakan pertanyaan metafisik yang kedudukannya hampir sama dengan pertanyaan tentang keberadaan obyek-obyek lainnya seperti universalitas,  
E.     FILSAFAT PENDIDIKAN MATEMATIKA
            1.      Definisi Filsafat Pendidikan Matematika
Filsafat Ilmu Pendidikan Matematika adalah filsafat yang menelusuri dan menyelidiki (hakekat pelaksanaan pendidikan matematika yang bersangkut paut dengan tujuan, latar belakang, cara dan hasilnya. Serta hakekat ilmu pendidikan matematika yang berkaitan dengan analisis kritis terhadap struktur dan kegunaannya.) sedalam dan seluas mungkin segala sesuatu mengenai semua ilmu Pendidikan Matematika, terutama hakekatnya, tanpa melupakan metodenya. Kerapkali kita lihat ilmu filsafat dipandang sebagai ilmu yang abstrak dan berada di awang-awang saja, padahal ilmu filsafat itu dekat dan berada dalam kehidupan kita sehari. Benar, filsafat bersifat tidak konkrit, karena menggunakan metode berpikir sebagai cara pergulatannya dengan realitas hidup kita.
            2.      Filsafat Ilmu Pendidikan Matematika
Filsafat ilmu pendidikan matematika dapat dibedakan dalam tiga macam yaitu :
a.     Ontologi Ilmu Pendidikan Matematika 
Ontologi adalah teori mengenai apa yang ada, dan membahas tentang yang ada, yang tidak terikat oleh satu perwujudan tertentu. Eksistensi dari entitas-entitas matematika juga menjadi bahan pemikiran filsafat. Adapun metode-metode yang digunakan antara lain adalah:abstraksi fisik yang dimana berpusat pada suatu obyek, Abstrksi bentuk adalah sekumpulan obyek yang sejenis, Abstraksi metafisik adalah sifat obyek yang general. Jadi, matematika ditinjau dari aspek ontologi, dimana aspek ontologi telah berpandangan untuk mengkaji bagaimana mencari inti yang yang cermat dari setiap kenyataan yang ditemukan, membahas apa yang kita ingin ketahui, seberapa jauh kita ingin tahu, menyelidiki sifat dasar dari apa yang nyata secara fundamental.
b.     Epistemologi Matematika
Epistemologi merupakan salah satu bagian dari filsafat dimana pemikiran reflektif terhadap segi dari pengetahuan seperti kemungkinan, asal-mula, sifat alami, batas-batas, asumsi dan landasan, validitas dan reliabilitas sampai kebenaran pengetahuan. Jadi, matematika jika ditinjau dari aspek epistemologi, matematika mengembangkan bahasa numerik yang memungkinkan kita untuk melakukan pengukuran secara kuantitatif. Dengan konsep-konsep yang kongkrit, kontektual, dan terukur matematika dapat memberikan jawaban secara akurat. Perkembangan struktur mental seseorang bergantung pada pengetahuan yang diperoleh siswa melalui proses asimilasi dan akomodasi.
c.     Aksiologi Matematika
Aksiologi yaitu nilai-nilai, ukuran-ukuran mana yang akan dipergunakan dalam seseorang mengembangkan ilmu. Aksiologi : Filsafat nilai, menguak baik buruk, benar-salah dalam perspektif nilai Aksiologi matematika sendiri terdiri dari etika yang membahas aspek kebenaran, tanggungjawab dan peran matematika dalam kehidupan, dan estetika yang membahas mengenai keindahan matematika dan implikasinya pada kehidupan yang bisa mempengaruhi aspek-aspek lain terutama seni dan budaya dalam kehidupan. Jadi, jika ditinjau dari aspek aksiologi, matematika seperti ilmu-ilmu yang lain, yang sangat banyak memberikan kontribusi perubahan bagi kehidupan umat manusia di jagat raya nan fana ini. Segala sesuatu ilmu di dunia ini tidak bisa lepas dari pengaruh matematika. Dimulai dengan pertanyaan dasar untuk apa penggunaan pengetahuan ilmiah? Apakah manusia makin cerdas dan makin pandai dalam mencapai kebenaran ilmiah,maka makin baik pula perbuatanya ?
Dalam hal ini sama saja dengan semua pendidikan salah satunya Filsafat Ilmu Pendidikan Matematika. Filsafat Ilmu Pendidikan Matematika berkembang sesuai dengan peranannya, merupakan landasan filosofis yang menjiwai seluruh kebijaksanaan dan pelaksanaan pendidikan Matematika.
Artikel Kajian Pendidikan Matematika Menurut Teori Filsafat
Description: Artikel Kajian Pendidikan Matematika Menurut Teori Filsafat (BAB II)
Rating: 4.5
Reviewed by: Rumah Makalah
On: 08.50.00
TOP